Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Horonobe Underground Research Laboratory Project Investigation Report for the 2022 Fiscal Year

Nakayama, Masashi

JAEA-Review 2023-032, 159 Pages, 2024/02

JAEA-Review-2023-032.pdf:19.37MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2022, we continued R&D on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rock to natural perturbations". These are identified as key R&D on challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. Specifically, "full-scale engineered barrier system (EBS) performance experiment" and "solute transport experiment with model testing" were carried out as part of "Study on near- field system performance in geological environment". "Demonstration of engineering feasibility of repository technology" and "evaluation of EBS behaviour over 100$$^{circ}$$C" were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behaviour of sedimentary rock to natural perturbations" was also implemented in two areas, "evaluation of intrinsic buffering against endogenic and exogenic processes" and "development of techniques for evaluating excavation damaged zone (EDZ) self-sealing behaviour after backfilling". The Horonobe International Project (HIP) was initiated in February 2023 to promote research and development in collaboration with national and international organizations.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2022-025, 164 Pages, 2022/11

JAEA-Review-2022-025.pdf:12.25MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA). The main aim of this project is to enhance the reliability of relevant disposal technologies for geological disposal of high-level radioactive waste through a comprehensive research and development (R&D) program in the deep geological environment within the host sedimentary rock at Horonobe in Hokkaido, north Japan. In fiscal year 2021, we continued R&D on three important issues specified in the "Horonobe Underground Research Plan from Fiscal Year 2020", which involve "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rock to natural perturbations". Specifically, "full-scale engineered barrier system (EBS) performance experiment" and "solute transport experiment with model testing" were carried out as part of "Study on near-field system performance in geological environment". "Demonstration of engineering feasibility of repository technology" and "evaluation of EBS behaviour over 100$$^{circ}$$C' were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behaviour of sedimentary rock to natural perturbations" was also implemented in two areas, "evaluation of intrinsic buffering against endogenic and exogenic processes" and "development of techniques for evaluating excavation damaged zone (EDZ) self-sealing behaviour after backfilling". The results of the R&D, along with those obtained in other departments of JAEA, will reinforce the technical basis for both repository implementation and safety regulation. For the sake of this, we will steadily proceed with this project in collaboration with relevant organizations and universities both domestically and internationally and also widely publish the plans and results of the R&D to ensure their transparency and technical reliability.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2019 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-042, 116 Pages, 2021/01

JAEA-Review-2020-042.pdf:10.33MB

The Horonobe Underground Research Laboratory Project will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2019 fiscal year (2019/2020). The investigations, which are composed of "Geoscientific research" and "R and D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2019 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2020 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-022, 34 Pages, 2020/11

JAEA-Review-2020-022.pdf:3.99MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the URL will be decided by the end of 2019 Fiscal Year. JAEA summarizes the research and development activities of the important issues carried out during the 3rd Mid- and Long-term Plan, and set out three important issues after 2020 fiscal year. After consultation with Hokkaido and Horonobe town, JAEA formulated the Horonobe underground research plan after 2020 fiscal year within the 3rd and 4th Mid- and Long-term Plan. This report summarizes the investigation program for the 2020 fiscal year (2020/2021).

JAEA Reports

Proceedings of Information and Opinion Exchange Conference on Geoscientific Study, 2019

Nishio, Kazuhisa*; Shimizu, Mayuko; Iyatomi, Yosuke; Hama, Katsuhiro

JAEA-Review 2020-013, 59 Pages, 2020/08

JAEA-Review-2020-013.pdf:19.64MB

The Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA) has been conducting geoscientific study in order to establish a scientific and technological basis for the geological disposal of HLW. Technical information of the result on the geoscientific study conducted at TGC is provided at the annual Information and Opinion Exchange Conference on Geoscientific Study of TGC for exchanging opinions among researchers and engineers from universities, research organizations and private companies. This document compiles the research presentations and posters of the conference in Mizunami on November 20, 2019.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2019 fiscal year

Aoyagi, Kazuhei

JAEA-Review 2019-008, 20 Pages, 2019/07

JAEA-Review-2019-008.pdf:3.33MB

As part of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are the top priority issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The Horonobe URL Project is planned to extend over a period of about 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the investigation program for the 2019 fiscal year (2019/2020). In the 2019 fiscal year, investigations in "geoscientific research", including "development of techniques for investigating the geological environment", "development of engineering techniques for use in the deep underground environment" and "studies on the long-term stability of the geological environment", are continuously carried out. Investigations in "research and development on geological disposal technology", including "improving the reliability of disposal technologies" and "enhancement of safety assessment methodologies", are also continuously carried out.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2017 fiscal year

Hanamuro, Takahiro; Saiga, Atsushi

JAEA-Review 2018-027, 125 Pages, 2019/02

JAEA-Review-2018-027.pdf:21.79MB

The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2017 fiscal year (2017/2018). The investigations, which are composed of "Geoscientific research" and "R&D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2017 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

JAEA Reports

Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (2011-2013)

Sasamoto, Hiroshi; Yamamoto, Nobuyuki; Miyakawa, Kazuya; Mizuno, Takashi

JAEA-Data/Code 2014-033, 43 Pages, 2015/03

JAEA-Data-Code-2014-033.pdf:3.92MB
JAEA-Data-Code-2014-033-appendix(CD-ROM).zip:0.09MB

Development of technologies to investigate properties (conditions) of deep geological environment and models development of geological environment have been pursued in "Geoscientific Research" in the Horonobe underground research laboratory (Horonobe URL) project. A geochemical model of groundwater evolution which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years (i.e., from the fiscal year 2011 to 2013), especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.

Journal Articles

Groundwater recovery experiment in Mizunami Underground Research Laboratory; Numerical simulation of H-M coupled behavior of rock and backfill materials to evaluate the influence on the surrounding rock

Takayama, Yusuke; Sato, Toshinori; Onoe, Hironori; Iwatsuki, Teruki; Saegusa, Hiromitsu; Onuki, Kenji

Dai-43-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.313 - 318, 2015/01

In the Mizunami Underground Research Laboratory, groundwater recovery experiment is being conducted to construct the method to understand the transition of geological environment due to groundwater recovery at the -500m access and research gallery-north. As a part of this experiment, backfill test is planned using drilling pits filled with artificial materials (clay and concrete) to evaluate the influence on the surrounding rock mass due to the interaction of rock and artificial materials. In this study, numerical simulation of the backfill test has been carried out to predict the qualitative hydro-mechanical behavior.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2013 fiscal year

Hanamuro, Takahiro

JAEA-Review 2014-039, 69 Pages, 2014/10

JAEA-Review-2014-039.pdf:43.66MB

The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2013 fiscal year (2013/2014). The investigations, which are composed of "Geoscientific research" and "R&D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2013 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations.

11 (Records 1-11 displayed on this page)
  • 1